
www.manaraa.com

Implementing Pushback: Router-Based Defense Against DDoS Attacks

John Ioannidis Steven M. Bellovin
ji@research.att.com smb@research.att.com

AT&T Labs Research AT&T Labs Research

Abstract

Pushback is a mechanism for defending against dis-
tributed denial-of-service (DDoS) attacks. DDoS attacks
are treated as a congestion-control problem, but because
most such congestion is caused by malicious hosts not obey-
ing traditional end-to-end congestion control, the problem
must be handled by the routers. Functionality is added to
each router to detect and preferentially drop packets that
probably belong to an attack. Upstream routers are also
notified to drop such packets (hence the termPushback) in
order that the router’s resources be used to route legitimate
traffic. In this paper we present an architecture for Push-
back, its implementation under FreeBSD, and suggestions
for how such a system can be implemented in core routers.

1. Introduction

Distributed Denial of Service (DDoS) attacks have be-
come an increasingly frequent disturbance of the global
Internet[15]. They are very hard to defend against because
they do not target specific vulnerabilities of systems, but
rather the very fact that the target is connected to the net-
work. All known DDoS attacks take advantage of the large
number of hosts on the Internet that have poor or no se-
curity; the perpetrators break into such hosts, install slave
programs, and at the right time instruct thousands of these
slave programs to attack a particular destination. The attack
does not have to exploit a security hole at the target to cause
a problem (although that would exacerbate the problem, to
the attacker’s benefit), and there is almost nothing the vic-
tim can do to protect itself.

Under normal operating conditions, and assuming that
network links and router processing capacity have been ade-
quately provisioned, the standard, TCP-like congestion con-
trol ensures fair use of the available resources. Under a
DDoS attack, the arriving packets do not obey end-to-end
congestion control algorithms; rather, they incessantly bom-
bard the victim, causing the well-behaved flows to back off
and eventually starve. In addition, a large-scale DDoS at-
tack not only causes trouble to its intended victim, but also

interferes with other traffic that may happen to share a por-
tion of the network that is being heavily congested.

Mahajanet al. [13, 14] introduce a network-based solu-
tion, called Pushback, to address the question of whether
anything can be doneinsidethe network to defend against
DDoS attacks, and evaluate the solution with extensive sim-
ulations. In this paper, we present an implementation of
these concepts under Unix, along with experimental results
from our laboratory testbed. In the rest of this section we
give a very brief overview of the Pushback mechanism; the
reader should refer to [14] for all the details. Section 2
presents the architecture of a router that can support Push-
back; Section 3 gives implementation and performance de-
tails; we conclude with a discussion of deployment options,
as well as related work.

1.1. Overview of Pushback

If we could unequivocally detect packets belonging to an
attack and drop just those, the DDoS problem would be
solved. However, routers cannot tell with total certainty
whether a packet actually belongs to a ‘good’ or a ‘bad’
flow; our goal will be to develop heuristics that try to iden-
tify most of the bad packets, while trying not to interfere
with the good ones. Again, Mahajanet al. introduce the
concept ofAggregate-based Congestion Control (ACC); in
this context, anaggregateis defined as a subset of the traf-
fic with an identifiable property. For example, “packets to
destinationD,” “TCP SYN packets,” or even “IP packets
with a bad checksum” are all descriptions of aggregates.
The task is to identify aggregates responsible for conges-
tion, and preferentially drop them at the routers.

To illustrate Pushback, consider the network in Fig-
ure 1.1. The server D is under attack; the routersRn are
the last few routers by which traffic reaches D. The thick
lines show links through which attack traffic is flowing; the
thin lines show links with no attack traffic. Only the last
link is actually congested, as the inner part of the network is
adequately provisioned. In the absence of any special mea-
sures, hardly any non-attack traffic would be reaching the
destination. Some non-attack traffic is flowing through the
links between R2-R5, R3-R6, R5-R8, R6-R8, and from R8
to D, but most of it is dropped due to congestion in R8-D.

www.manaraa.com

D

R5 R6

R1 R2 R3

R7

R4

R8

Figure 1. A DDoS attack in progress.

Throughout this paper we shall be referring to ‘good,’
‘bad,’ and ‘poor’ traffic and packets.Badpackets are those
sent by the attackers. Bad traffic is characterized by anat-
tack signature, which we strive to identify; what can be re-
ally identified is thecongestion signature, which is the set of
properties of the aggregate identified as causing problems.
Poor traffic consists of packets that match the congestion
signature, but are not really part of an attack; they are just
unlucky enough to have the same destination, or some other
properties that cause them to be identified as belonging to
the attack.Goodtraffic does not match the congestion sig-
nature, but shares links with the bad traffic and may thus
suffer. Whether traffic is considered ‘good,’ ‘bad,’ or ‘poor’
(or simply unaffected) depends on the congestion signature
employed; in the examples that follow, the congestion sig-
nature will be “UDP traffic destined for D.”

Good traffic in Figure 1.1 is, for example,TCP traffic
entering from any of the links on top and destined for D;
because the link R8-D is congested, that traffic suffers. If
the link R2-R5 were also congested, traffic exiting from the
lower-left link of R5 might also suffer: according to our
definition, this would still constitute ‘good’ traffic (it goes
through a link congested by the attack); the term “collateral
damage” has been used to describe it, in order to empha-
size that such traffic is not going to the target of the attack.
One of the benefits of Pushback, that no other mechanism
offers, is the ability to prevent such collateral damage from
happening. Returning to the example, some of the traffic
entering R4 is good (non-UDP traffic destined for D), some
is poor (legitimate UDP traffic to D), and some is simply
unaffected (the fraction of traffic exiting R7 that is not go-
ing to R8), but none is bad (there is no attack coming in
from that subtree). Traffic entering from R1 through R3 is
a mixture of all four kinds of traffic. Now, no matter how
smart filters R8 could employ, it cannot do anything to al-
low more good or poor traffic originating from the left side
of the graph to reachD. All it can do is preferentially drop

traffic arriving from R5 and R6, hoping that more non-bad
traffic would flow in from R7. With Pushback, R8 sends
messages to R5 and R6 tellingthemto rate-limit traffic for
D. Even though the links downstream from R5 and R6 are
not congested, when packets arrive at R8 they are going to
be dropped anyway, so they may as well be dropped at R5
and R6. These two routers, in turn, propagate the request
up to R1, R2, and R3, tellingthemto rate-limit the bad traf-
fic, allowing some of the poor traffic, and more of the good
traffic, to flow through.

2. Architecture

Consider a typical router; Figure 2 gives the view of the
routing mechanism from one output interface. There are
several incoming links, and the routing subsystem is implic-
itly shown in the choice of the output interface. A rate lim-
iter is introduced before the output queue. In the FreeBSD
operating system [8], the IPFW firewall package also does
traffic shaping and is in fact used in our prototype as the
rate limiter. Some form of rate limiting or traffic shap-
ing is already in place in many commercial routers, so this
approach is not restricted to Unix-based routers only The
simplest way to view the rate limiter is as a predicate that
decides whether a packet is dropped or forwarded. In our
architecture, dropped packets are sent to the Pushback dae-
mon,pushbackd . The daemon, in turn, periodically up-
dates the parameters of the rate limiter, and also informs
the upstream daemons to update theirs. It is interesting to
point out that the actual Pushback daemon may not reside
on the router itself, but rather on an external ancillary piece
of equipment.

N

. . .

pushbackd

rate limiter

output queue

Input queues

Signature?

Match
Congestion

adjust local ACC
D

P

D
P

pushback

update congestion signature

Y

Figure 2. Partial view of a router.

Packets that are not dropped by the rate limiter are sent
to the output queue, and may be dropped then if there is
no available bandwidth for them to be transmitted. This has
the (desired) effect that packets that matched the congestion
signature but were not dropped by the rate limiter are not
treated preferentially over packets that did not.

www.manaraa.com

The Pushback daemon receives dropped packets from
both the rate limiter and the output queue, as it needs to
know both how well the rate limiter is performing and how
many other packets are still being dropped in the output
queue. The information sent to the Pushback daemon is
shown in Figure 2. Most of the fields have the obvious pur-
pose. The magic number provides some protection against
synchronization problems between the kernel and the user-
level process. The timestamp is expressed in nanoseconds
since the router was last booted, and its purpose, along
with the packet size, is to allow the code to estimate the
bandwidth that would have been consumed by the dropped
packets. The ‘reason’ field indicates whether this was a
rate-limiter drop or an output queue drop, and if the lat-
ter, whether it was a tail-queue drop, a RED drop, and so
on. Only packets dropped because of queue discipline re-
strictions are logged; packets dropped because, for exam-
ple, they were not routable, or even because no buffer space
could be allocated for them at the driver may not even reach
this part of the code, so they are not reported at all. This is
the desired behavior, as these other packets would not have
left the router anyway and thus would not have affected the
congestion of downstream links.

Magic number
IP Destination address

Input interface
Output interface

Timestamp
Packet size

Reason

Figure 3. Dropped packet report.

It is important to note that the design decision to separate
the rate-limiting and packet-dropping functionality from the
rest of the Pushback mechanism has implications for the
eventual deployment of such a mechanism in the Inter-
net. Routers can be designed1 to report information about
dropped packets, either to a process running on the router
CPU, or on a computer attached to the router using a local
interface. All the intelligence, which would have to evolve
rapidly as DDoS attacks change in nature, would reside in
easy to replace, generic PCs, and scarce router resources do
not have to be allocated to the Pushback task.

2.1. Aggregate Detection

Periodically,pushbackd processes the saved drop set
(i.e., the set of packets dropped by the rate limiter and the
output queue) to try to detect congestion. A large amount of
dropped packets obviously indicates congestion. If the rate
limiter has not been engaged yet, and all dropped packets

1in fact, some high-end routers already do that.

are coming from the output queue, congestion exists on the
link between this router and the next. If all drops are the
work of the rate limiter, this could indicate that rate-limiting
is working too well, perhaps the limits should be reduced.

The Pushback daemon now has to determine if there is
an attack going on, and whether to respond to it. The exact
algorithm(s) to run are will be an important research topic
for some time to come. We present such an algorithm here;
another can be found in [14].

We start by considering the drop set, that is, the set of
packets that are dropped by the rate limiter. These may
include packets dropped because of already-existing Push-
back activity, but as we shall see, this does not affect the
outcome of the algorithm. The size of the drop set should
be large enough to allow meaningful results, but also small
enough to be processed in a small amount of time. Fortu-
nately, it is not necessary to keep all the dropped packets; a
representative sample of them suffices, as it is the most fre-
quent packets that will affect the outcome of the algorithm,
and these will be the most represented ones in the sample.
The important feature is that the algorithm should run in
less time that it takes to collect the packets.

This algorithm detects aggregates based only on IP desti-
nation address; the assumptions (the most pessimistic pos-
sible) are that source addresses cannot be trusted anyway,
and that the attackers are just sending IP packets with ran-
dom contents to attempt to congest the target link. It starts
by deciding whether the congestion level is high enough,
that is, the drop rate is high enough, to warrant attempt-
ing to do preferential dropping. A simple test is whether
the bandwidthwo of the output link would be exceeded by
more than an acceptable drop rate, say, 20% of the traffic, in
other words, ifwi > 1:2�wo, wherewi is the total incom-
ing bandwidth from all input links. If this is the case, the
algorithm starts by matching the destination address of each
dropped packet against the routing table, and selecting the
longest matching prefix. This groups the dropped packets
according to their eventual destination link in some down-
stream router (or even the target, if the target has multiple
IP addresses). The drop set is then sorted with the prefix
as the key. We now want to find the prefix with the highest
count. This can be done in a single pass. The sorting has
complexityO(n logn), wheren is the size of the drop set.
The counting and determination of the most frequent prefix
is, of course, linear inn. Now, for the subset of the drop set
that matches this selected prefix, we perform another scan to
see if the destinations of the dropped packets match a longer
prefix than the routing prefix. If, for example, a single ma-
chine has been targeted, even though the prefix garnered
from the routing table will be shorter than 32 (or 128, in
the case of IPv6) bits, the address of the selected aggregate
will be the full 32 (or 128) bits. The selected prefix consti-
tutes the congestion signature; we denote the bandwidth for

www.manaraa.com

which this traffic is responsible aswb.
It is likely that more than one attack is happening at the

same time. If removing the traffic identified the congestion
signature does not bring the output traffic below the pre-
viously described acceptable level, that is, ifwi � wb >
1:2�wo still holds, the algorithm is repeated in the hope of
adding more prefixes to the congestion signatures. The pre-
cise parameters would be tunable to specific installations.

In some case we may not be able to find a second pre-
fix (or even a first) responsible for a significant fraction of
the traffic; that would be the case where congestion is not
caused by an attack, or traffic to a specific destination, but
by a general increase in background traffic. We then rate-
limit what we can, and let the queue management of the
output link, whatever it is, handle the rest of the congestion.

It is also possible to run multiple detection algorithms
concurrently, each looking for different properties; for ex-
ample, it may be desirable to detect both random traffic and
particular kinds of attack such as a TCP SYN attack. In that
case, two congestion signatures are given to the rate limiter,
and packets matching either signature are dropped.

2.2. Rate Limiting

Once the congestion signature has been identified, the
code must decide what to rate-limit it to. Ifwb > wl, where
wl = wi�1:2�wo, then we simply rate-limit the aggregate
down towl, and pass the rest of the traffic on. Ifwb < wl,
we eliminate all traffic belonging to the congestion signa-
ture, and let the rest of the excess traffic be limited by the
output queue. Also, remember that the traffic that passes
through the rate limiter and is not dropped is not treated
preferentially; it is also sent to the output queue of the inter-
face and treated just like the rest of the output traffic. That
is, just because a packet was not dropped by the rate limiter
does not mean that it will be preferentially treated and not
dropped if it must at the output queue.

The Pushback daemon gets dropped packets from both
the rate limiter and the output queue; if the rate of the at-
tack stays constant, the daemon will get the same number
of dropped packets, but it will be getting more of them from
the rate limiter. This means that, as long as the attack is go-
ing on, the Pushback daemon will keep telling the rate lim-
iter to drop packets; when it stops, no special action needs to
be taken; at the next update, no attack will be identified, and
the rate limiting will stop. Naturally, some damping may be
necessary to avoid oscillations; experience with these mech-
anisms in production networks will be necessary before all
the details can be worked out.

2.3. Pushback

So far we have described thelocalversion of ACC. This is
not enough, however. Once the Pushback daemon has iden-
tified a prefix to rate-limit, it communicates that information

to its upstream links. The messages exchanged by routers
implementing Pushback are described in detail in [10]. The
most important message is the Pushback Request, shown in
Figure 2.3.

Various header fields
RLS-ID
Maximum depth
Depth of Requesting Node
Bandwidth Limit
Expiration Time
Congestion Signature

Figure 4. Pushback Request.

Each request has a Rate-Limiting Session Identifier
(RLS-ID), which is used to match responses (status mes-
sages, described later) to requests. The Depth field is used
to set a limit to the propagation of the Pushback requests.
The depth of the originator is 0; whenever a Pushback dae-
mon receives a request, it passes it on to its upstream dae-
mons, adding 1 to the depth before propagating the mes-
sage. The maximum depth of propagation is set by the orig-
inating router and passed along by each subsequent router.
Pushback uses soft state; there is no explicit revocation of
a Pushback request, and no effort is made to recapture the
state after a router reset. The expiration time is used to man-
age this soft state – if a Refresh message does not arrive
before the expiration time has elapsed, the entry is deleted.
Finally, the congestion signature is a list of destination pre-
fixes that the bandwidth limit applies to.

Authentication of Pushback requests is an obvious con-
cern. If the routers participating in Pushback are neighbors,
simply sending the request out with a TTL (or hop count
for IPv6) of 255 is sufficient; any request coming from an
attacker would have a lower TTL, and if an attacker has
compromised a router, there are more serious concerns to be
resolved. While ordinary authentication mechanisms such
as IPsec can be used, it is not necessary to do so in the case
of adjacent routers under common administrative control.

A special type of request is a cancel message, which in-
structs the upstream router to stop rate-limiting. It is useful
when long expiration times are specified by default, and the
originating router has decided that it no longer needs pro-
tection from upstream.

The Pushback daemon not only sends requests, but it also
listens for requests from its downstream routers. Once it
receives a Pushback request (or refresh), it adds the appro-
priate rule to the rate limiter, and keeps track of the dropped
packets it gets from it.

In addition to requests sent upstream, the Pushback dae-
mon also sends status messages downstream. These sta-
tus messages contain a depth field; if it is non-zero, the

www.manaraa.com

response is simply passed along downstream (remember
that Pushback request messages are passed only between
adjacent routers, possibly using non-globally-routable ad-
dresses; hence, the status messages have to follow the same
hop-by-hop paths). Since many Pushback operations may
be happening at the same time, the downstream direction
for any particular one can be determined by examining the
local set to match the congestion signature and RLS-ID, and
determine which interface it pertains to. Before propagating
a request downstream, 1 is subtracted from the node depth.

When a daemon receives a response (with depth 0), it can
use the information in it to determine whether to continue
the Pushback, or how to modify it. For example, it may
determine that a larger fraction of traffic that was was re-
quested is being dropped on the subtree upstream from one
link, and much less traffic from the subtrees upstream from
the rest of the links. Such information may be used to dy-
namically adapt the requests to match the evolving traffic
patterns.

In the following section, we describe how this architec-
ture is actually implemented under FreeBSD.

3. Implementation

Encouraged by the simulation results in [14, 13], we im-
plemented Pushback under FreeBSD. The tests were carried
out on the network shown in Figure 3.

R1

g

R2

R4

R3

D

p

R5

b g

R6

gb

10Mbps

5Mbps

2Mbps

Figure 5. Testbed network.

The sources of bad (attack), poor (legitimate but sharing
a congestion signature), and good (legitimate but suffering)
traffic are shown asb, p, and g, respectively. The destina-
tion of all traffic is the subnet where D is connected, but
only D is under attack.Rnare routers; the links between the

routers are 10Mbps for the first layer, 5Mbps for next layer,
and 2Mbps between the last router and the destination. The
test hardware being used (300MHz PentiumII generic PCs
with 100Mbps Ethernet interfaces, running FreeBSD 4.2)
can easily route at least 30Mbps of aggregate traffic with-
out dropping any packets; in our experiments, substantially
slower rates were used, both to give a margin of safety, and
to make the actual measurements easier.

We use the IPFW packet filter functionality present in
FreeBSD to both simulate links of particular bandwidth-
delay characteristics, and to implement the rate limiter for
the actual Pushback operations. For, example the following
two commands specify that the link outgoing on interface
xl2 has a bandwidth of 10 megabits per second, and its
queue can hold 50 packets (which is the usual queue length
of Ethernet interfaces).

ipfw add 999 pipe 999
ip from any to any
out xmit xl2

ipfw pipe 999
config bw 10Mbits/s
queue 50packets

The link speeds are configured by setting up the output
speeds of the corresponding interfaces. No input speeds
need to be configured. The rate limiting code in IPFW may
apply various queue disciplines, such as RED; the default
discipline is tail-drop, and it is what is used in our experi-
ments.

The kernel has been modified so that when a packet is
dropped in the queue management code, the information
described in Figure 2 is sent topushbackd . Any num-
ber of mechanisms can be used to pass information from
the kernel to the user; we chose to use the tunnel interface
driver (tun(4)). When the output routine of the tunnel
driver (tunoutput()) is called by the networking code
in the kernel, the packet can be read from the user level
by reading the corresponding/dev/tun n device. We use
/dev/tun63 . The user-level daemon,pushbackd , may
keep only a sample of the dropped packets. The probability
of keeping a packet is inversely proportional to its size, so
that a constant fraction of the bandwidth, rather than of the
packet count, is kept. At the traffic levels in the experiment,
the code has no trouble keeping up.Pushbackd samples
the dropped packets it receives, and periodically (every 60
seconds) runs the aggregate-detection algorithm described
in Section 2.1. Even for a drop set of105 packets, the algo-
rithm runs in well under a second.

For each prefix that the daemon is rate-limiting, whether
it is because of locally-detected congestion, or because of a
Pushback request, it keeps an entry with all the fields shown
in Figure 2.3, plus a starting time, in a linked list, ordered by

www.manaraa.com

expiration time. As an implementation optimization, only
the difference between expiration times is kept in the cor-
responding fields, so that for each clock tick, only the first
one has to be decremented. When the detection algorithm
finds a prefix to rate-limit, it searches the list; if it is already
there, and it is a prefix that was originated with the current
node, it updates the expiration time, potentially moving it
further back in the linked list.

When R6 detects congestion on its outgoing link to D, it
runs the aggregate-detection algorithm, and decides that the
target is 10.102.0.31 (the IP address of D). It then examines
the traffic for D it is getting from R4 and R5, and it finds that
R4 is sending it 5Mbps, but no traffic for D is arriving from
R5 (the ‘g’ traffic coming in from R3 is for another host in
D’s subnet). The outgoing link is only 2Mbps, it is going to
request R4 to limit the traffic they are sending to 2.4Mbps
(20% more than the output rate, so that some traffic. When
this happens R4 inserts a firewall rule such as this:

ipfw add 101 pipe 101 ip
from any to 10.102.0.31/32
out xmit xl2

ipfw pipe 101 config bw 2400Kbps

Since there is no traffic coming in from R5 for D, no
Pushback is sent to R5. Note that already we have a bet-
ter situation; only 2.4Mbps are arriving from R4; therefore,
if the ‘g’ sources upstream from R5 are sending traffic com-
parable to that, more of it will get through than before R4
starts rate-limiting. However, this could have been accom-
plished by clever input filtering on R6, so let us proceed one
step further.

R4 will now tell R1 and R2 to rate-limit traffic to D. In a
similar fashion, more of the bad traffic from the ‘b’ sources
entering each of R1 and R2 will be dropped, and some of the
traffic from the ‘g’ (good) sources destined for D’s subnet
makes it through. Initial measurements indicate that Push-
back is rate-limiting successfully, so that more good traffic
is getting through. Further study is needed to fine-tune the
sampling rates, detection intervals, and also consider feed-
back information in adjusting the Pushback parameters.

It was no surprise that the system worked. The most in-
teresting observation is that even though the hardware used
is fairly old (a benefit in this case, as it is more easily over-
loaded), there was no noticeable system performance degra-
dation. This also does not come as a surprise, since all
the switching in the kernel is done in software and in the
same address space. In a real router with hardware-assisted
fast switching paths for the common cases, the overhead of
imposing a number of rate limiting sessions may be much
higher.

4. Related Work

Distributed Denial of Service attacks have been a real
problem for less than three years, and not much published
work exists on the subject. Related work falls into two cat-
egories: old work that can also be used in countering DDoS
attacks, and new work specifically aimed at this task.

Originally, it was suggested that DDoS attacks could be
countered by applying resource allocation techniques on
network bandwidth. Integrated Services [5] and Differen-
tiated Services [2] are two approaches aimed at isolating
flows with specific quality of service (QoS) requirements
from lower-priority traffic. It is not clear if this approach
would help; Web traffic, which is a significant fraction of
network traffic, is likely to remain best-effort, so it will not
be protected by QoS requirements. It is also not clear to
what extent compromised sources could fake traffic to show
it belonged to QoS-protected flows.

There are many congestion-control mechanisms, which,
if only they were globally deployed, might alleviate some
of the effects of congestion due to DDoS attacks. Random
Early Detect (RED)[11] and its variants try to identify flows
that do not obey TCP-friendly end-to-end congestion con-
trol, and preferentially drop them. There is also a large body
of work (e.g., Fair Queuing[7], Class-Based Queuing[12])
aimed at allocating specific fractions of the available band-
width to each flow so that they all get served. The main
problem with these approaches is that packets belonging to
DDoS attacks do not have readily-identifiable flow signa-
tures, and thus cannot be identified by these mechanisms.
This is the reason why the concept of Aggregate-based Con-
gestion Control was developed[14] and which is where the
work in the present paper is based upon.

A different style of approach to combating DDoS attacks
focuses on trying to detect a DDoS attack in progress and
then respond to the specific attack. Various forms of packet
tracking have been suggested. Some try to construct a par-
tial map of the paths that the attack is taking; the two main
variants aretraceback[1] and packet marking [16, 6]. Oth-
ers, such as [18] require all edge routers to log (a sample of
all) packets, and then analyze the logs in order to identify,
and hopefully block, sources of the attack. An interesting
approach is that of [3] where, starting with a partial map
of the network, they can locate routers where attack traf-
fic is passing through by flooding them and watching the
attack traffic decrease; while intellectually appealing, this
technique is likely to create much controversy if it were to
be applied routinely. In traceback techniques, routers pick
outgoing packets with a small probability (e.g. 1=20000),
and send a traceback packet (a new kind of ICMP packet)
to the same destination as the sampled packet. The trace-
back packet contains the IP address of the router sending it,
and is always sent out with a TTL (or Hop Limit) of 255 (as
a rudimentary form of authentication). During an attack, a

www.manaraa.com

sufficient number of these packets will reach the target for it
to form an approximate map of the path the attack is taking.
Of course, the attacker can inject its own traceback pack-
ets, but unless it has compromised a router fairly close to
the target (to inject packets with a sufficiently high TTL),
all it will achieve is create a fictitious subtree from where
part of the attack may be originating. Packet marking does
not send additional packets, but rather modifies the IP ID
field in each packet to carry partial information about the
router that marked the packet. Clever techniques are used
to reconstruct the original data. This approach has its own
set of failures (e.g., it is hard to get it to work with IPv6).
The question of what to do even when the paths the attack
is taking are identified remains largely unanswered, and it
may still involve human operators, especially when admin-
istrative boundaries are crossed.

The common problem that all the tracking techniques are
trying to solve is that source addresses in attack packets can-
not be trusted, because they are very easy to forge. If all
edge routers in the entire Internet were implementing source
address filtering[9], this task would be greatly simplified.
Of course, most machines where the packets are originating
have been compromised by an attacker, and their owners do
not even know that they are being used for an attack. More-
over, even if the hundreds or thousands of machines that an
attack is coming from were known, it is not clear what could
be done about them. It has also been suggested[17] that in-
trusion detection systems or firewalls be used to detect an at-
tack in progress, and notify upstream elements accordingly.
Finally, there is an approach that is similar to Pushback that
was described in [19] in an Active-Networks-based defense
against flooding attacks.

5. Discussion

Let us discuss some issues that may affect the way Push-
back could be deployed. First off, it is fairly obvious that
the Pushback approach is most effective when an attack is
non-isotropic; in other words, when there are routers fairly
close to the target where most of the attack traffic is arriving
from a subset of the input links. That is a reasonably safe
assumption; even the largest attacks do not involve more
than a few thousand compromised machines, and there are
many millions of machine on the Internet. It would be par-
ticularly hard for an attacker to ensure that the attack slaves
are evenly distributed with respect to the target.

Another issue to examine is what fraction of the attack
traffic originates from hosts served by the same ISP as the
target. The smaller the ISP, the smaller that fraction will be,
and even the largest of the top-tier ISPs will have a sizeable
fraction of attacks originating from the outside. While an
ISP can unilaterally deploy Pushback in its routers, unless
agreements with its peering ISPs are made on how to honor
pushback requests (an issue fraught with security and policy

issues), said ISP will have to take advantage of Pushback as
best as it can inside its own network. One easy step, which
effectively extends Pushback by one more hop without the
coöperation of the upstream (belonging to a different ISP)
router, is to performinputrate-limiting on the border routers
(along with the normal output rate-limiting). Of course, this
is only useful if the border router connects to more than one
other border routers. Applyinginput rate-limiting penalizes
bad traffic coming in on the rate-limited input link without
affecting incoming traffic from other links (which output-
only rate-limiting would). Conceptually, this is the same
as the border router having one additional router between
itself and each peering link, and sending pushback requests
to those conceptual routers.

Now, in general, an ISP’s network can be thought of as a
cloud where clients attach (on edge routers) and which con-
nects to other ISPs at peering points (private or public). An
ISP’s network can thus be viewed as a single virtual router,
with multiple inputs and multiple outputs. If, in addition to
output rate limiting, we were to implement input rate limit-
ing, then the following variation of Pushback could be con-
sidered: when an edge router detects an attack toward one
of its attached customers, it tries to determine what frac-
tions of the attack traffic are coming through the border
routers of the ISP. This could be done with some variation
of ITRACE or packet-marking by the border routers that
would be caught and examined at the edge routers. The
edge routers would then ask (with proper authentication, of
course) the border routers to applyinput rate limiting to the
requested aggregate.

The detection algorithms in the Pushback architecture are
not necessarily limited to information they get from just
the drop set. Rather, Pushback should be viewed as com-
plementary to many of the DDoS detection approaches de-
scribed in Section 4. For example, the drop set can be com-
pared with information gathered with ITRACE in an effort
to adjust the congestion signature so as to reduce the amount
of traffic being penalized (‘poor’ and ‘good’ traffic). More-
over, a good map of the network with reliable historical
traffic profiles from traces can be used to determine sud-
den changes in traffic profiles that could signal an attack, or
help determine how to best allocate rate limits in pushback
messages.

6. Summary and Future Work

We presented the implementation of a mechanism that
treats Distributed Denial of Service attacks as a congestion-
control problem, and acts by identifying and preferentially
dropping traffic aggregates responsible for such congestion.
The purpose of this work is twofold; to show the practical-
ity of such an approach, and to explore ways of deploying
it incrementally in an operational environment. We already
know from simulations[14] that Pushback is a promising

www.manaraa.com

way of combating DDoS attacks and flash crowds. There
are some aspects that are easy to simulate, but real code
running on real machines allows us to explore the details
of a real system. We also needed to see how much memory
and computing power is needed to actually run Pushback, in
the hope of influencing commercial router designers toward
implementing Pushback in their code. A promising hybrid
solution, which we plan to investigate over the next few
months, is to use features such as the Committed Access
Rate[4] in ciscoR routers to implement the rate-limiting,
while sniffing traffic on both incoming and outgoing links
of each router to detect congestion and dropped packets,
even if the router itself cannot report those. Such experi-
ments may allow rapid deployment of Pushback even in the
absence of explicit support from router vendors.

Acknowledgments
The original idea for Pushback came from an informal

DDoS research group consisting of Steven M. Bellovin,
Matt Blaze, Bill Cheswick, Cory Cohen, Jon David, Jim
Duncan, Jim Ellis, Paul Ferguson, John Ioannidis, Marcus
Leech, Perry Metzger, Robert Stone, Vern Paxson, Ed Viel-
metti, and Wietse Venema. A recent paper [14] presents the
theoretical basis and detailed simulation results upon which
this work has been based. We also thank the anonymous
reviewers for many valuable and insightful comments.

References
[1] S. M. Bellovin. ICMP Traceback Messages. Work in

Progress, Internet Draft draft-bellovin-itrace-00.txt, March
2000.

[2] S. Blake, D. L. Black, M. A. Carlson, E. Davies, Z. Wang,
and W. Weiss. An Architecture for Differentiated Services.
RFC 2475, December 1998.

[3] H. Burch and B. Cheswick. Tracing Anonymous Packets
to Their Approximate Source. InUsenix LISA, December
2000.

[4] Cisco Web Pages: Committed Access Rate.
http://www.cisco.com / univercd / cc / td / doc / prod-
uct / software / ios111 / cc111 / car.htm, February 1998.

[5] D. D. Clark, S. Shenker, and L. Zhang. Supporting Real-
Time Applications in an Integrated Services Packet Network
Architecture and Mechanism. InACM SIGCOMM, 1992.

[6] D. Dean, M. Franklin, and A. Stubblefield. An Algebraic
Approach to IP Traceback. InProceedings of NDSS ’01,
February 2001.

[7] A. Demers, S. Keshav, and S. Shenker. Analysis and Simu-
lation of a Fair Queueing Algorithm. InACM SIGCOMM,
1989.

[8] The FreeBSD Project. http://www.freebsd.org.
[9] P. Ferguson and D. Senie. Network Ingress Filtering: De-

feating Denial of Service Attacks which employ IP Source
Address Spoofing. RFC 2267, January 1998.

[10] S. Floyd, S. Bellovin, J. Ioannidis, K. Kompella, R. Maha-
jan, and V. Paxson. Pushback Messages for Controlling Ag-
gregates in the Network. Internet Draft,work in progress.

[11] S. Floyd and V. Jacobson. Random Early Detection gate-
ways for Congestion Avoidance.IEEE/ACM Transactions
on Networking, Vol. 1(4):pp. 397–413, August 1993.

[12] S. Floyd and V. Jacobson. Link-sharing and Resource Man-
agement Models for Packet Networks.IEEE/ACM Transac-
tions on Networking, Vol. 3(4):pp. 365–386, August 1995.

[13] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Pax-
son, and S. Shenker. Controlling High Bandwidth Aggre-
gates in the Network. Submitted to Computer Communica-
tions Review.

[14] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis,
V. Paxson, and S. Shenker. Controlling High Band-
width Aggregates in the Network – Extended Version.
http://www.aciri.org/pushback/ .

[15] D. Moore, G. M. Voelker, and S. Savage. Inferring Internet
Denial-of-Service Activity. In10th Usenix Security Sympo-
sium, August 2001.

[16] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practi-
cal Network Support for IP Traceback. InACM SIGCOMM,
August 2000.

[17] D. Schnackenberg, K. Djahandari, and D. Sterne.
Infrastructure for intrustion detection and response.
In Proceedings of the DARPA Information Surviv-
ability Conference and Exposition 2000, March
2000. ftp://ftp.tislabs.com/pub/IDIP/DISCEXIDR-
Infrastructure.pdf.

[18] R. Stone. CenterTrack: An IP Overlay Network for Track-
ing DoS Floods. In9th Usenix Security Symposium, August
2000.

[19] V. C. Van. A Defense Against Address Spoofing Using Ac-
tive Networks. Batchelor’s Thesis, MIT, 1997.

